93 research outputs found

    Deepfake Detection of Occluded Images Using a Patch-based Approach

    Full text link
    DeepFake involves the use of deep learning and artificial intelligence techniques to produce or change video and image contents typically generated by GANs. Moreover, it can be misused and leads to fictitious news, ethical and financial crimes, and also affects the performance of facial recognition systems. Thus, detection of real or fake images is significant specially to authenticate originality of people's images or videos. One of the most important challenges in this topic is obstruction that decreases the system precision. In this study, we present a deep learning approach using the entire face and face patches to distinguish real/fake images in the presence of obstruction with a three-path decision: first entire-face reasoning, second a decision based on the concatenation of feature vectors of face patches, and third a majority vote decision based on these features. To test our approach, new datasets including real and fake images are created. For producing fake images, StyleGAN and StyleGAN2 are trained by FFHQ images and also StarGAN and PGGAN are trained by CelebA images. The CelebA and FFHQ datasets are used as real images. The proposed approach reaches higher results in early epochs than other methods and increases the SoTA results by 0.4\%-7.9\% in the different built data-sets. Also, we have shown in experimental results that weighing the patches may improve accuracy

    A Novel Scheme for Intelligent Recognition of Pornographic Images

    Full text link
    Harmful contents are rising in internet day by day and this motivates the essence of more research in fast and reliable obscene and immoral material filtering. Pornographic image recognition is an important component in each filtering system. In this paper, a new approach for detecting pornographic images is introduced. In this approach, two new features are suggested. These two features in combination with other simple traditional features provide decent difference between porn and non-porn images. In addition, we applied fuzzy integral based information fusion to combine MLP (Multi-Layer Perceptron) and NF (Neuro-Fuzzy) outputs. To test the proposed method, performance of system was evaluated over 18354 download images from internet. The attained precision was 93% in TP and 8% in FP on training dataset, and 87% and 5.5% on test dataset. Achieved results verify the performance of proposed system versus other related works

    Stacked Cross-modal Feature Consolidation Attention Networks for Image Captioning

    Full text link
    Recently, the attention-enriched encoder-decoder framework has aroused great interest in image captioning due to its overwhelming progress. Many visual attention models directly leverage meaningful regions to generate image descriptions. However, seeking a direct transition from visual space to text is not enough to generate fine-grained captions. This paper exploits a feature-compounding approach to bring together high-level semantic concepts and visual information regarding the contextual environment fully end-to-end. Thus, we propose a stacked cross-modal feature consolidation (SCFC) attention network for image captioning in which we simultaneously consolidate cross-modal features through a novel compounding function in a multi-step reasoning fashion. Besides, we jointly employ spatial information and context-aware attributes (CAA) as the principal components in our proposed compounding function, where our CAA provides a concise context-sensitive semantic representation. To make better use of consolidated features potential, we further propose an SCFC-LSTM as the caption generator, which can leverage discriminative semantic information through the caption generation process. The experimental results indicate that our proposed SCFC can outperform various state-of-the-art image captioning benchmarks in terms of popular metrics on the MSCOCO and Flickr30K datasets

    A Cascade Transformer-based Model for 3D Dose Distribution Prediction in Head and Neck Cancer Radiotherapy

    Full text link
    Radiation therapy is the primary method used to treat cancer in the clinic. Its goal is to deliver a precise dose to the planning target volume (PTV) while protecting the surrounding organs at risk (OARs). However, the traditional workflow used by dosimetrists to plan the treatment is time-consuming and subjective, requiring iterative adjustments based on their experience. Deep learning methods can be used to predict dose distribution maps to address these limitations. The study proposes a cascade model for organs at risk segmentation and dose distribution prediction. An encoder-decoder network has been developed for the segmentation task, in which the encoder consists of transformer blocks, and the decoder uses multi-scale convolutional blocks. Another cascade encoder-decoder network has been proposed for dose distribution prediction using a pyramid architecture. The proposed model has been evaluated using an in-house head and neck cancer dataset of 96 patients and OpenKBP, a public head and neck cancer dataset of 340 patients. The segmentation subnet achieved 0.79 and 2.71 for Dice and HD95 scores, respectively. This subnet outperformed the existing baselines. The dose distribution prediction subnet outperformed the winner of the OpenKBP2020 competition with 2.77 and 1.79 for dose and DVH scores, respectively. The predicted dose maps showed good coincidence with ground truth, with a superiority after linking with the auxiliary segmentation task. The proposed model outperformed state-of-the-art methods, especially in regions with low prescribed doses

    Automatic Multi-Class Cardiovascular Magnetic Resonance Image Quality Assessment using Unsupervised Domain Adaptation in Spatial and Frequency Domains

    Get PDF
    Population imaging studies rely upon good quality medical imagery before downstream image quantification. This study provides an automated approach to assess image quality from cardiovascular magnetic resonance (CMR) imaging at scale. We identify four common CMR imaging artefacts, including respiratory motion, cardiac motion, Gibbs ringing, and aliasing. The model can deal with images acquired in different views, including two, three, and four-chamber long-axis and short-axis cine CMR images. Two deep learning-based models in spatial and frequency domains are proposed. Besides recognising these artefacts, the proposed models are suitable to the common challenges of not having access to data labels. An unsupervised domain adaptation method and a Fourier-based convolutional neural network are proposed to overcome these challenges. We show that the proposed models reliably allow for CMR image quality assessment. The accuracies obtained for the spatial model in supervised and weakly supervised learning are 99.41+0.24 and 96.37+0.66 for the UK Biobank dataset, respectively. Using unsupervised domain adaptation can somewhat overcome the challenge of not having access to the data labels. The maximum achieved domain gap coverage in unsupervised domain adaptation is 16.86%. Domain adaptation can significantly improve a 5-class classification task and deal with considerable domain shift without data labels. Increasing the speed of training and testing can be achieved with the proposed model in the frequency domain. The frequency-domain model can achieve the same accuracy yet 1.548 times faster than the spatial model. This model can also be used directly on k-space data, and there is no need for image reconstruction.Comment: 21 pages, 9 figures, 7 table

    A Generalised Deep Meta-Learning Model for Automated Quality Control of Cardiovascular Magnetic Resonance Images

    Full text link
    Background and Objectives: Cardiovascular magnetic resonance (CMR) imaging is a powerful modality in functional and anatomical assessment for various cardiovascular diseases. Sufficient image quality is essential to achieve proper diagnosis and treatment. A large number of medical images, the variety of imaging artefacts, and the workload of imaging centres are among the things that reveal the necessity of automatic image quality assessment (IQA). However, automated IQA requires access to bulk annotated datasets for training deep learning (DL) models. Labelling medical images is a tedious, costly and time-consuming process, which creates a fundamental challenge in proposing DL-based methods for medical applications. This study aims to present a new method for CMR IQA when there is limited access to annotated datasets. Methods: The proposed generalised deep meta-learning model can evaluate the quality by learning tasks in the prior stage and then fine-tuning the resulting model on a small labelled dataset of the desired tasks. This model was evaluated on the data of over 6,000 subjects from the UK Biobank for five defined tasks, including detecting respiratory motion, cardiac motion, Aliasing and Gibbs ringing artefacts and images without artefacts. Results: The results of extensive experiments show the superiority of the proposed model. Besides, comparing the model's accuracy with the domain adaptation model indicates a significant difference by using only 64 annotated images related to the desired tasks. Conclusion: The proposed model can identify unknown artefacts in images with acceptable accuracy, which makes it suitable for medical applications and quality assessment of large cohorts.Comment: 16 pages, 1 figure, 2 table

    SOMM: A New Service Oriented Middleware for Generic Wireless Multimedia Sensor Networks Based on Code Mobility

    Get PDF
    Although much research in the area of Wireless Multimedia Sensor Networks (WMSNs) has been done in recent years, the programming of sensor nodes is still time-consuming and tedious. It requires expertise in low-level programming, mainly because of the use of resource constrained hardware and also the low level API provided by current operating systems. The code of the resulting systems has typically no clear separation between application and system logic. This minimizes the possibility of reusing code and often leads to the necessity of major changes when the underlying platform is changed. In this paper, we present a service oriented middleware named SOMM to support application development for WMSNs. The main goal of SOMM is to enable the development of modifiable and scalable WMSN applications. A network which uses the SOMM is capable of providing multiple services to multiple clients at the same time with the specified Quality of Service (QoS). SOMM uses a virtual machine with the ability to support mobile agents. Services in SOMM are provided by mobile agents and SOMM also provides a t space on each node which agents can use to communicate with each other
    • …
    corecore